cient Implementation of Weighted ENO Schemes 1

نویسنده

  • Guang-Shan Jiang
چکیده

In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially non-oscillatory) nite diierence schemes of Liu, Osher and Chan 9]. It was shown by Liu et al. that WENO schemes constructed from the r th order (in L 1 norm) ENO schemes are (r +1) th order accurate. We propose a new way of measuring the smoothness of a numerical solution, emulating the idea of minimizing the total variation of the approximation, which results in a 5 th order WENO scheme for the case r = 3, instead of the 4 th order with the original smoothness measurement by Liu et al. This 5 th order WENO scheme is as fast as the 4 th order WENO scheme of Liu et al. and, both schemes are about twice as fast as the 4 th order ENO schemes on vector supercomputers and as fast on serial and parallel computers. For Euler systems of gas dynamics, we suggest to compute the weights from pressure and entropy instead of the characteristic values to simplify the costly characteristic procedure. The resulting WENO schemes are about twice as fast as the WENO schemes using the characteristic decompositions to compute weights, and work well for problems which do not contain strong shocks or strong reeected waves. We also prove that, for conservation laws with smooth solutions, all WENO schemes are convergent. Many numerical tests, including the 1D steady state nozzle ow problem and 2D shock entropy wave interaction problem, are presented to demonstrate the remarkable capability of the WENO schemes, especially the WENO scheme using the new smoothness measurement, in resolving complicated shock and ow structures. We have also applied Yang's artiicial compression method to the WENO schemes to sharpen contact discontinuities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction

A crucial step in obtaining high-order accurate steady-state solutions to the Euler and NavierStokes equations is the high-order accurate reconstruction of the solution from cell-averaged values. Only after this reconstruction has been completed can the ux integral around a control volume be accurately assessed. In this work, a new reconstruction scheme is presented that is conservative, is uni...

متن کامل

WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes

ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...

متن کامل

Efficient Implementation of Weighted ENO Schemes

A survey of several nite diierence methods for systems of nonlinear hyperbolic conservation laws, J.

متن کامل

Weighted ENO Schemes for Hamilton-Jacobi Equations

In this paper, we present a weighted ENO (essentially non-oscillatory) scheme to approximate the viscosity solution of the Hamilton-Jacobi equation: = 0: This weighted ENO scheme is constructed upon and has the same stencil nodes as the 3 rd order ENO scheme but can be as high as 5 th order accurate in the smooth part of the solution. In addition to the accuracy improvement, numerical compariso...

متن کامل

Efficient Implementation of Weighted ENO Schemes

or perhaps with a forcing term g(u, x, t) on the right-hand side. Here u 5 (u1 , ..., um), f 5 (f1 , ..., fd), x 5 (x1 , ..., xd) In this paper, we further analyze, test, modify, and improve the high order WENO (weighted essentially non-oscillatory) finite differand t . 0. ence schemes of Liu, Osher, and Chan. It was shown by Liu et al. WENO schemes are based on ENO (essentially nonthat WENO sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996